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ALGORITHM TO SOLUTION OF THE OPTIMIZATION PROBLEM WITH
PERIODIC CONDITION AND BOUNDARY CONTROL*

N.S. MUKHTAROVA1, N.A. ISMAILOV2

Abstract. In the paper the optimization problem with periodic condition and boundary con-

trol is considered. It is assumed that object’s motion is described by the system of ordinary

nonlinear differential equations. Finding the optimal solution using the method of quasilineariza-

tion the given nonlinear problem is reduced to the linear quadratic boundary control problem.

For its solution the corresponding Euler-Lagrange equation with linear boundary conditions is

used. Results are illustrated on the example from oil industry which shows adequacy of the

mathematical model with practice.
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1. Introduction

After fountain process the main stage of the oil production is a gas-lift stage [1, 11]. It is
known, that in this process the motion of the object is described by the partial differential
equations of hyperbolic type [10]. The main problem of gas-lift process is that the volume of
injected gas in the annular space be minimal, but extraction of the gas-liquid mixture (GLM)
at the end of lift be maximal [1, 13]. In this paper the control is not included in the right hand
side of the equation, but only in the initial condition. In [8] is shown that debit is 43% of GLM
volume at the beginning of the lift. But the periodic condition is offered in the given problem for
extracting the maximum debit with a minimum initial gas. Introducing the periodicity condition
Q(2l) = χQ(l+0), 0 < χ < 1and changing χ, debit is any percent of GLM at the beginning of
the lift. The optimization problem with periodic condition and boundary control [6, 9] is solved
by the method of quasilinearization [4]. In this method after linearization the given equation
and the condition on the well bottom the obtained equation Euler-Lagrange are linear. At the
end the calculation algorithm is proposed and the efficiency of the offered algorithm is illustrated
on the concrete example.

2. Problem statment

Let the object’s motion be described by the system of ordinary nonlinear differential equations

ẏ = f1(y(x)), 0 ≤ x ≤ l − 0
ẏ = f2(y(x)), l + 0 ≤ x ≤ 2l

(1)

y(0) = u (2)
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and by the following conditions on the well bottom (i.e. at y = l)

y(l + 0) = fδy(l − 0) + γ(y(l − 0))ȳ, (3)

where is n-dimensional vector of the object coordinates, u is an unknown initial (control), ȳ

is a scalar external perturbation, fδ is n × n dimensional matrix, γ(y(l − 0)) is n-dimensional
vector.

It is required to find such control u from (2), that gives minimum to the functional

J =
1
2
y′(2l)Ny(2l) + u′Cu +

2l∫

0

y′(x)Q(x)y(x)dx, (4)

where N is n×n dimensional symmetric matrix, N < 0 and Q(x) is n×n dimensional symmetric
matrix, Q(x) ≥ 0.From the condition

χy(l + 0) = y(2l), 0 < χ < 1. (5)

putting this condition into (4), we obtain the following functional

J =
1
2
χ2y′(l + 0)Ny(l + 0) +

2l∫

0

y′(x)Q(x)y(x)dx + u′Cu. (6)

Euler-Lagrange equation for the extremal problem (1)-(3), (5), (6) is

λ̇(x) = −8l

β
y(x)Q(x)− λ(x)

∂f1(y(x))
∂y(x)

, 0 ≤ x ≤ l − 0 (7)

λ̇(x) = −8l

β
y(x)Q(x)− λ(x)

∂f2(y(x))
∂y(x)

, l + 0 ≤ x ≤ 2l

with the boundary conditions{
λ(l + 0)fδ + λ(l + 0)∂γ(y(l−0))

∂y(l−0) ȳ − β
4lλ(l − 0) = 0,

2Cu + δ + β
4lλ(0) = 0,

(8)

where λ(x) is a Lagrange multiplier, δ is an unknown constant parameter.
Finally, solution of the optimization problem (1), (3), (6) is reduced to the solution of the

Euler-Lagrange equation (1), (2), (5)-(8). For the solution of that problem the numerical method
is offered below.

3. The method of quasilinearization

We use the method of quasilinearization for the nonlinear differential equation (1), where the
boundary condition (2) is also nonlinear.

Let some nominal solution yk(x) of the problems (1)-(3), (5) be given. Then if the differential
equation (1) is linearized with this nominal trajectory, we get the following system of linear
differential equation for the (k +1)th iteration

ẏk+1(x) = A(yk(x))y(x) + B(yk(x)), (9)

where
A(yk(x)) = f

′
1(y

k(x)),

B(yk(x)) = f1(yk(x))− f
′
1(y

k(x))yk(x).

The linearization form of the condition (3) with nominal trajectory yk(x) is

y(l + 0) = η(yk(l − 0))y(l − 0) + µ(yk(l − 0)), (10)
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µ(yk(l − 0)) = γ(yk(l − 0)ȳ − ∂γ(yk(l − 0)
∂yk(l − 0)

yk(l − 0)ȳ,

η(yk(l − 0)) =
∂γ(yk(l − 0)
∂yk(l − 0)

ȳ + fδ.

It is required to find such control u that satisfies the conditions (9), (10) and gives the extremal
value to the functional

J =
1
2
y′(2l)Ny(2l) + u′Cu +

2l∫

0

y′(x)Q(x)y(x)dx, (11)

where N is n×n dimensional symmetric matrix , N < 0 and Q(x) is n×n dimensional matrix,
Q(x) ≥ 0. From the condition

χy(l + 0) = y(2l), 0 < χ < 1 (12)

we have

J =
1
2
χ2y′(l + 0)Ny(l + 0) + u′Cu +

2l∫

0

y′(x)Q(x)y(x)dx. (13)

Euler-Lagrange equation for the extremal problem (9), (10), (12), (13) is

λ̇(x) = −8ly(x)Q(x)− 4lA(yk(x))λ (14)

with the boundary conditions




( 1
4l − 1)λ(l + 0) + χNy(2l)− χ

4lλ(2l) = 0,
1
4lλ(0) + δ + 2Cu = 0,

λ(l − 0) = 4lη(yk(l − 0))λ(l + 0),
(15)

where λ(x) is a Lagrange multiplier, δ is a constant parameter.
Combining the equations (9), (14) we have the following linear differential equations:

[
ẏ

λ̇

]
=

[
A(yk(x)) 0
−8lQ(x) −4lA(yk(x))

] [
y

λ

]
+

[
B(yk(x))

0

]
. (16)

Combining the boundary conditions (10), (12), (15) we get

Kz = q, (17)

where

K =




0 0 η(yk(l − 0)) 0 −1 0 0 0 0
0 0 0 1 0 −4lη(yk(l − 0)) 0 0 0
0 0 0 0 χ 0 −1 0 0

2C 1
4l 0 0 0 0 0 0 1

0 0 0 0 0 1
4l − 1 χ − χ

4l 0




, (18)

z =




y(0)
λ(0)

x(l − 0)
λ(l − 0)
y(l + 0)
λ(l + 0)
y(2l)
λ(2l)

δ




, q =




−µ(xk(l − 0))
0
0
0
0




.
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Thus, let us introduce the solution of the equation (16) in the following form

[
y

λ

]
= Φ(x, x0)

[
y(0)
λ(0)

]
+

x∫

x0

Φ(x, δ)
[

B

0

]
dδ, (19)

where Φ is a fundamental matrix for (16) and the formula (19) can be written in a more
convenient form for the realization at the end of the interval 0 ≤ x ≤ l − 0

[
y(l − 0)
λ(l − 0)

]
= Φ(l, 0)

[
y(0)
λ(0)

]
+ N(l, 0) (20)

and at the end of the interval l + 0 ≤ x ≤ 2l[
y(2l)
λ(2l)

]
= Φ(2l, l)

[
y(l + 0)
λ(l + 0)

]
+ N(2l, l). (21)

Note that, N(l, 0) N(2l, l) from (20) (21) is defined by the relation

N(i, j) =

j∫

i

Φ(j, δ)
[

B

0

]
dδ.

Thus, we obtain 9n linear algebraic equations with respect to x



K

Φ(l, 0) −E 0 0 0
0 0 Φ(2l, l) −E 0


 z =




q

−N(l, 0)
−N(2l, l)


 . (22)

Thus we offer the following algorithm:
(1) The initial data and parameters from (9) are introduced;
(2) Nominal trajectory yk(x) and control uk are selected;
(3) A(yk(x)), B(yk(x))from (9) are calculated;
(4) The fundamental matrix Φ is determined from linear differential equations (9), (14);
(5) The system of linear algebraic equations (22) is solved with respect to x;
(6) The system of the differential equations (9), (14) is solved and yk+1(x) and uk+1(x) are

found.
(7) Giving a small real number ε and the condition

∣∣∂J
∂u

∣∣ < ε is verified, where ∂J
∂u = 1

4lλ(0)+
δ+2Cu, if the condition is fulfilled, then the calculation stops, otherwise passage to step
2.

4. Example

For illustration of the offered algorithm we consider the example of the gas-lift process [2, 3].
It is known that the mathematical model describing the gas-lift process is in the form of the
system of partial differential equations [2, 5]:

−∂P

∂x
=

∂(ρωc)
∂ t

+ 2aρωc,

−∂P

∂ t
= c2 ∂(ρωc)

∂x
,

where P = P (x, t), ωc = ωc(x, t) is a pressure on its fixed value and the velocity, averaged over
the cross section, respectively, t,x – time and coordinate, respectively; c-sound speed in gas and
gas-liquid mixture (GLM); ρ-density of mixture; 2a = g

ωc
+ λcωc

2D , g- acceleration of free fall,
λc- coefficient of hydraulic resistance; D – effective internal diameter of the lift and the annular
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space; ρωc = Q
F , Q = ρωcF - mass flow of injected gas in annular space and GLM in lift, F - the

ring space cross section area of the pump-compressor pipe.

Figure 1. Gas-lift well.

The partial differential equations of flow of gas and GLM may be replaced by the ordinary
differential equations 




Q̇ =
2aρFQ2

c2ρ2F 2 −Q2
, Q(0) = u,

Ṗ = − 2ac2ρ2FQ

c2ρ2F 2 −Q2
, P (0) = P0,

(23)

using time-averaging method, where c >> ωc and except Q = ρωcF , all parameters are con-
stants.

The condition on the well bottom (i.e. at x = l) is given as follows

Q(l + 0) = γQ(l − 0) + γ1(Q(l − 0))Q̄, (24)

γ1(Q(l − 0)) = −δ3(Q(l − 0)− δ2)2 + δ1,

where γ and γ1(Q(l − 0)) are constants ,δ1, δ2, δ3 are real numbers.
After linearization of the first equation of (23) and (24) we obtain

Q̇(x) = A(Qk(x))Q(x) + B(Qk(x)), Q(0) = u, (25)

Q(l + 0) = η(Qk(l − 0))Q(l − 0) + µ(Qk(l − 0)), (26)

where

A(Qk(x)) =
4c2aρ3F 3Qk(x)

(Qk2(x)− c2ρ2F 2)2
,

B(Qk(x)) =
2aρFQk2

(x)
c2ρ2F 2 −Qk2(x)

− 4aρ3F 3Qk2
(x)

(Qk2(x)− c2ρ2F 2)2
,

µ(Qk(l − 0)) = 2δ3Q̄Qk(l − 0)[Qk(l − 0)− δ2]− [δ3[Qk(l − 0)− δ2]2 − δ1]Q̄.

It is required to find such control u from (25) that satisfies to the equations (25), (26) and
gives minimum to the functional [7, 12]

J =
1
2
αQ2(2l) +

1
2
βu2, (27)
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where α < 0 and β > 0 are weight coefficients. From the condition

χy(l + 0) = y(2l), 0 < χ < 1. (28)

putting this condition into (27), we obtain the following functional

J =
1
2
αχ2Q2(l + 0) +

1
2
βu2. (29)

It is necessary to find such minimum value of the injected gas Q(0) from (25) that provides
maximum value for the debit Q(2l).

Euler-Lagrange equation for the extremal problem (25)-(26), (28), (29) looks like

λ̇ = −A(Qk(x))λ (30)

with boundary conditions





( 1
4l − 1)λ(l + 0)− χ

4lλ(2l) + χαQ(2l) = 0
λ(l − 0) = 4lη(Qk(l − 0))λ(l + 0)
βu + δ + 1

4lλ(0) = 0,
(31)

where λ(x) is a Lagrange multiplier, δ is a constant parameter.
Combining the equations (25), (30) we have the following linear differential equations:

[
Q̇

λ̇

]
=

[
A(Qk(x)) 0

0 −A(yk(x))

] [
Q(x)
λ(x)

]
+

[
B(yk(x))

0

]
. (32)

Combining the boundary conditions (26), (28), (31) we get

Kz = q, (33)

K =




0 0 η(Qk(l − 0)) 0 −1 0 0 0 0
0 0 0 1 0 −4lη(Qk(l − 0)) 0 0 0
0 0 0 0 χ 0 −1 0 0
β 1

4l 0 0 0 0 0 0 1
0 0 0 0 0 1

4l − 1 χα − χ
4l 0




, (34)

z =




Q(0)
λ(0)

Q(l − 0)
λ(l − 0)
Q(l + 0)
λ(l + 0)
Q(2l)
λ(2l)

δ




, q =




−µ(Qk(l − 0))
0
0
0
0




.

Thus, let us search the solution of the equation (32) in the form

[
Q

λ

]
= Φ(x, x0)

[
Q(0)
λ(0)

]
+

x∫

x0

Φ(x, δ)
[

B

0

]
dδ, (35)

where Φ is a fundamental matrix for (32) and the formula (35) can be written in a more
convenient form for the realization at the end of the interval 0 ≤ x < l − 0[

Q(l − 0)
λ(l − 0)

]
= Φ(l, 0)

[
Q(0)
λ(0)

]
+ N(l, 0), (36)
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Table 1

χ 0.1 0.3 0.4 0.6 0.999
Q(2l)

Q(l+0) ·100% 10% 30% 40% 60% 99.99%

and at the end of the interval l + 0 < x ≤ 2l

[
Q(2l)
λ(2l)

]
= Φ(2l, l)

[
Q(l + 0)
λ(l + 0)

]
+ N(2l, l). (37)

Note that, N(l, 0) N(2l, l) from (36) (37) are defined by the following relation

N(i, j) =

j∫

i

Φ(j, δ)
[

B

0

]
dδ.

Thus, we obtain 9n linear algebraic equations with respect to x




K

Φ(l, 0) −E 0 0 0
0 0 Φ(2l, l) −E 0


 z =




q

−N(l, 0)
−N(2l, l)


 . (38)

Let us illustrate the application of this method on the following example.
Example 1. Let the parameters of the equation (25) be in the following form: 0 ≤ x ≤ l:
l=1485 m, c=331 m/s, ρ = 0.717 kg

m3 , d=
√

1142 − 732 · 10−3 m , λ=0.01; l ≤ x ≤ 2l:
c=850 m/s, ρ = 700 kg

m3 , d=0.073m, λ=0.23.
By using algorithm described above, we see that to achieve the accuracy 10−16 is needed 13
iterations and finally the following result is obtained

Q(0) = 0.0015291, Q(l + 0) = 0.051239, Q(2l) = 0.05124.

It is shown that, changing χ debit (Q(2l)) is any percent of GLM (Q(l+0)) at the beginning of
the lift in table 1:

5. Conclusion

In the paper the results are given, which allows one to define the efficiency of the quasilineariza-
tion method. The problem has been reduced to the linear quadratic control problem for which
adequacy of the proposed mathematical model is shown.
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